روشی نوین به منظور طبقه بندی داده های چند بازگشتی لایدار با استفاده از اطلاعات هندسی مجاورتی و فضای پدیده
Authors
Abstract:
دادههای اخذ شده توسط سیستمهای لیزر اسکنر هوایی به دلیل برخورداری از مزایایی نظیر دقت هندسی نسبتاً بالا و تراکم مکانی بالای نقاط، اطلاعات هندسی متنوع و منحصر به فردی از سطوح فیزیکی عوارض فراهم میآورند. طبقهبندی و تفکیک دادههای ابر نقطه به عوارض سازندهی محیط، نقش مهمی در روند مدلسازی سهبعدی عوارض ایفا میکند. در مقاله پیش رو، مسألهی تفکیک ابرنقاط بعنوان یک فرایند طبقهبندی نظارتشده مدنظر قرار گرفته شده است؛ روند اجرایی در روش پیشنهادی مبتنی بر سه گام بوده که در گام نخست، برای هر نقطهاز ابرنقاط مجموعهای از ویژگیها مبتنی بر تحلیلهای مجاورتی تولید میگردد. در گام دوم، ویژگیهای بهینه به کمک دادههای آموزشی و فضای پدیده استخراج شده و در نهایت، طی یک الگوریتم خوشهبندی، با استفاده از ویژگیهای استخراج شده، دادههای ابر نقطه به کلاسهای مد نظر طبقهبندی میگردند. از این روش بمنظور طبقهبندی ابر نقاط چندبازگشتی لایدار مربوط به یک منطقهی شهری استفاده شد که نتایج طبقهبندی، دقت کلی معادل 15/93درصد و ضریب کاپای 89/0 را نشان دادند.
similar resources
بهبود طبقه بندی داده های لایدار با استفاده از مفاهیم هندسی و منطق فازی
امروزه دستیابی سریع و ارزان به اطلاعات عوارض پوششی سطح شهرها با استفاده از آنالیزهای سنجش از دور از اهمیت ویژه ای برخوردار است. چندین دهه از عمر این فناوری به عنوان اصلی ترین راهکار این هدف می گذرد. در چندسال اخیر با ظهور تصاویر با قدرت تفکیک مکانی بالا، کسب اطلاعات پوشش اراضی شمار زیادی از تحقیقات را به خود اختصاص داده است. البته هنوز اطلاعات سنجش از دور تا مرز رسیدن به یک ساختار تولید کاملآ خ...
15 صفحه اولارائه روشی نوین بر پایه الگوریتم های یادگیری چندکرنلی برای طبقه بندی محصولات کشاورزی با استفاده از سری های زمانی چند متغیره
امروزه، تشخیص دقیق نوع محصولات کشاورزی با استفاده از طبقهبندی سریهای زمانیِ حاصل از تصاویر سنجندههای مختلف سنجش از دوری، رو به افزایش است. دستهای از سریهای زمانی که با استفاده از تصاویر سنجندههای چندطیفی و یا فراطیفی ایجاد میشوند، از نوع سریهای زمانی چندمتغیره هستند. علیرغم محتوای بالای اطلاعاتی این نوع از سریهای زمانی، الگوریتمهای طبقهبندی موجود، به دلیل چهار- بعدی بودن این نوع ا...
full textارائه روشی برای طبقه بندی داده های ابرطیفی aviris ، با استفاده از استخراج ویژگی و ترکیب طبقه بندی کننده ها
یکی از پرکاربردترین روش های طبقه بندی نظارت شده، روش بیشترین احتمال است که در آن، به منظرو طبقه بندی از پارامترهایی آماری مانند ماتریس واریانس کوواریانس استفاده می شود. در تصاویر ماهواره ای ابر طیفی، به علت محدودیت نمونه های آموزشی و ابعاد بالای طیفی (زیاد بودن تعداد باند ها)، احتمال یکتا شده ماتریس های برآورد شده و با کاهش دقت طبقه بندی وجود دارد. به منظور حل این مشکل از روش های مختلفی همچون ک...
full textسیستم های طبقه بندی کننده ی چندگانه ی نوین درختی به منظور طبقه بندی زمین های کشاورزی از تصاویر نوری و راداری تمام قطبیده
تصاویر نوری و راداری با دریچهی مصنوعی تمامقطبیده (PolSAR)، منابع ارزشمندی برای طبقهبندی زمینهای کشاورزی است. ویژگیهای مستخرج از تصاویر نوری حاوی اطلاعاتی در مورد امضای بازتابی محصولات مختلف است. در مقابل، یک تصویر PolSAR فراهمکنندهی اطلاعاتی در مورد خصوصیات ساختاری و سازوکارهای پراکنش محصولات است. ترکیب این دو منبع قادر به ایجاد یک مجموعهدادهی مکمل با تعداد قابل توجهی از ویژگیهای زمان...
full textمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
full textMy Resources
Journal title
volume 25 issue 98
pages 15- 23
publication date 2016-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023